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ON THE INTERPOLATION OF GRAVITY ANOMALIES AND
DEFLECTIONS OF THE VERTICAL IN MOUNTAINOUS TERRAIN*

H. Baussus von Luetzow
U.S. Army Topographic Laboratories

Fort Belvoir, Virginia 22060

ABSTRACT:' The paper first addresses the interpolation of gravity anomalies
in mountainous terrain, to be represented as the sum of a "signal" variable

7with a quasi-stationary estimation structure and a computable "noise" variable
without a stationary character. It then develops the particular solution of the
boundary value problem of physical geodesy which permits a similar representation
of deflections of the vertical and draws some conclusions concerning the
inapplicability of Molodensky's series approach and of the collocation method
for the accurate determination of vertical deflections from unmodified gravity
anomalies in mountainous terrain. Thereafter, it discusses the estimation of
signal-type deflections of the vertical by means of spatial covariance functions,
i.e., by a linear regression technique called statistical collocation in physical
geodesy, and provides first order expansions of planar covariance functions.

1. INTRODUCTION. Deflection of the vertical components & and n play a

role in the adjustment of geodetic networks, in the computation of height anomaly

differences, and in the transformation of local coordinates into terrestrial

' - coordinates. Short of a three-dimensional solution of the geodetic boundary value

problem under consideration of mountainous terrain, deflection components and gravity

anomalies Ag are also desirable for the numerical upward continuation of the first

order derivatives of the anomalous gravity potential. The interpolation or

estimation of gravity vector components in flat terrain is not inherently difficult.

In mountainous terrain, gravity anomalies Ag are profitably modified to Faye

anomalies AgF by means of terrain corrections C, to be followed by a transformation

*Paper, accepted for presentation at the VIth International Symposium on Geodetic
Computations, Munich, W. Germany, Aug 31-Sep 5, 1981. To be published in sympo-
sium proceedings and in Proc. 25th Conference of Army Mathematicians, U.S. Army
Research Office, Research Triangle Park, NC 27709.
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to Bouguer anomalies &gE which permit an approximate two-dimensional interpolation.

Isostatic gravity anomalies Agi, to be corrected by the indirect effect, would

require a three-dimensional interpolation technique in the case of high accuracy. The

problem of deflection estimation has been discussed by Heiskanen and Moritz [1967] and

others,includlng the method by Molodensky et al. (19621 for the calculation of deflection

differences in flat terrain, and the difficulty to interpolate C, n in rough moun-

tainous terrain. Baussus von Luetzow [1.980] addressed the optimal densification

of deflections of the vertical in flat terrain with and without consideration of

gravity anomalies and extended Molodensky's approach. Badekas and Mueller [1968]

utilized Eotvos torsion balance measurement together with appropriate terrain

corrections for the interpolation of vertical deflections, a time-consuming procedure

and soon to be replaced by the employment of moving base gravity gradiometers.

Regardless of these efforts, an effective E,n-estimation method applicable il mountainou.

terrain will still be valuable and may also aid deflection estimation under

consideration of a series of discrete inertial measurements. Section 2 of this

study addresses the interpolation of gravity anomalies in mountainous terrain. In

section 3, the appropriate solution of the boundary value problem for vertical

deflections is presented and reformulated for optimal deflection estimation of

"signal" components of E and n and computation of topographic "noise" terms. The

estimation of signal-type components by means of spatial collocation and the

development of first order approximations of spatial covariance functions is the

subject of section 4.

2. INTERPOLATION OF GRAVITY ANOMALIES. It is well known that an accurate

analytical representation of free-air anomalies in pronounced mountainous terrain

can only be achieved by a polynomial of high degree by means of &S-data available in

a network of high resolution. As a consequence, satisfactory linear interpolation

requires small mesh sizes &x, ay. The following modified anomalies have been
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useful for geodetic applications and the purpose of Interpolation:

AgF Ag + C (1)

where C is the terrain correction, is called Faye anomaly.

38T
AgB a gF -bh + - (2)

2R

is the modified Bouguer or complete topographic anomaly where b -0.112 mgalm
1

is the Bouguer gradient, h is the elevation of terrain, 6T is the potential

of topographic masses, and R - 6371 Km is the earth's mean radius.

Agt =AgB + Ct + a6C - Ag + C- bh + Ct + aac + r (3)

is the isostatic anomaly valid for the compensated geold with a - 0.3086 mgal m-1,

6 as the vertical separation between geoid and cogeotd, and r as a random error.

Equation (3) may be further written as

Ag = Agi + Ct + r (4)

where Ct represents the aggregate of terms computable from the known topography.

In a more general form, also applicable to the optimal estimation of vertical

deflections, equation (4) is reformulated as

mas +n+r (5)

Zn this equation, m Is a "message" variable, s is a "signal" variable, n is

deterministic or computable "noise," and r is random-type noise.

Under consideration of a linear signal estimation structure, a signal can

then be optimally estimated as

ie a L(mi - ni - r1) (6)

where L denotes a linear operator and the subscripts e and I refer to the

3



estimation point Pe and measurement points PI, respectively. The optimal

measurement at Pe results as

me ae + ne + re - L(mi - nt) + re - L(r1 ) + ne (7)

The estimation error is

e(me) - e(e) + aire - L(rt)] (8)

The correspondino estimation error resulting from the utilization of topographically

unmodified measurements mi is

e(me) 5se - L(s1 ) + re - L(ri) + ne - LCnt) (9)
= e(se) + elre - L(ri)] + ne - L(ng)

Comparison of equation (9) with equation (8) shows that the non-optimal interpolation

process is associated with a "topographic" estimation error ne - L(ni) which

becomes in general intolerable in moderate to rough mountainous terrain and thus

induces the requirement of a fine mesh data grid.

The interpolation of isostatic anowalies by means of spatial collocation will

be treated in conjunction with the interpolation of isostatic deflections of the

vertical in section 4.

3. FORMULATION OF A VERTICAL DEFLECTION SOLUTION SUITABLE FOR OPTIMAL

INTERPOLATION. Gravimetric-topographic solutions for the anomalous gravity potential

and deflections of the vertical which inherently permit a "signal-noise" separation

according to equation (5) have been established by Pellinen [1969], Moritz [1969]

and Baussus von Luetzow [1971]. The latter emphasized that these essentially

identical solutions are almost equivalent to those of olodensky et al. [1962] and Brovat

1 1964], but are less data dependent, more direct from the computational view, and

more advantageous for the utilization of artificial satellite data. The notations to
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be used are the following:

C T.y1  height anomaly

T anomalous gravity potential

normal gravity

- prime vertical deflectiona (x )h-corist.

(y)h-const. meridian vertical deflection

h = hp elevation of terrain referring to moving point P

hA elevation of terrain referring to fixed computation

point A

$I a h northern terrain inclination

82- arc -- eastern terrain inclination2 ay
a a derivatives taken along the local horizon in a
X' - northern and eastern direction

G global mean gravity

azimuth angle counted clockwise from north

9) angle between the radius vectors A and TP
originating at the earth's spherical center

S( ) Stokes' function

k - 6.67.10 8cm3g'lsec"2  gravitational constant

p = 2.67 g cm"3  standard density

R - 6371 Km earth's mean radius

10 2 ZR sin 2 see Figure 1
2

1• (r + r2 2rArP cos 1) see Figure 1

o unit sphere (full solid angle)

g measured gravity

Ag g-y gravity anomaly

C terrain correction

Ag Ag + C Faye anomaly

-J5



b = 0.112 mgal W-1  Bouguer gradient

6T potential of topographic masses

Ag -bh -- modified Bouguer or complete topographicanomaly

The geometry involving hA, h=hp, , R, 1, and I is evident from Figure 1 below.

A

0 .

Figure 1

The established first order solution for the deflection components is

4  rff(AgF + gj + G1) Icosat dS(*) d, +, _ Ag + GI tfl (10)

where

8g9=3 kRfftl(l + h- hA - dyo I  V162 (h - h )()
=7 - 10 1 (h+A" h (

SR2 I -h da (12)

G fJ h1 2 1 1 sina sin do (13)
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It should be noted that 6g is in general very small and that the computation

of 6g1,6&, and 6n requires only integrations over v14:4i. It has further to

be emphasized that, according to 8aarda [1979], the inclination angles 61 and

02 should not exceed 70.

Equation (10) is now reformulated under consideration of

Ag~ ~ *(Ag -Ag. *6~2(14)AgF - Ag + (Ag, - A) - 4 + 6g" (15)

Aft -Ai + (Agh -AO) ' 49 + 8§3 (s

In these equations, Ag is a signal variable, profitably the isostatic anomaly

defined in equation (3). In comparison with 692, 6 3 is a relatively smooth

topographic quantity.

The substitutions (14) and (15) transform equation (10) into

+~rr G, Cosa4 dS(ip) d, _ & + GliC&g) jtn Bit,
infW~J~ + G1 (Ak sincx dip G tn 021

R r69 2o M] C , , + 6E+ C-ag2 - G.1 ( ) tnB.. (16)

+ GJJ g, +  69 + Gj(is) sincd df 6n G tnS2J

The first two terms of equation (16), involving the anomaly ag, represent the

"signal" components of I and n. The following three terms constitute computable

topographic "noise." Permitting for random-type errors rI and r n equation (16)

can be written in analogy with equations (4) and (5) as

I f + , ,+ jr, (17)

The numerical determination of the three topographic terms of equation (16)

is a complex task, which can, however, be actomplished without inherent

difficulties by means of high-speed computers. In this respect, the integration

7



area relating to the first topographic term can be considerably restricted. It

appears that the last two topographic terms are particularly subject to rapid

changes in mountainous terrain. Accurate interpolation is further favored if

given and estimated deflections refer to points associated with small terrain

inclinations.

In accordance with Moritz [1969 1, the second order correction for the

height anomaly is

6C()= R h) 2  (18)-4-f ffff 106€(2) fG 2 (g+ g3 S(,)da A +. 6 ) do (18) i

where

R2 ff (19)
G2= - - -hA G(Ag + 6 3 )da + (4 + 6b 3 ) tn28(

7 0

Here, a represents the maximal terrain inclination.

The second order deflection corrections are then

6 (6E(2)(,6)1+ rffr(6b) {sinc dS) di

+ 3 R3 ff (h-hA)2  cosc, ___ ddr (20)
+ f--J &3 104 _ sina ,

Designating the integral terms of equation (20) as second order topographic

corrections 6 (2) and (2 ), equation (17) assumes the modified form
t t

E ( = ( + t + 8E(2) + , (21)
(2) (2 an 6n.
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Higher order topographic correction terms are not warranted because

of a decreasing convergence radius in connection with higher derivatives, the

assumption of a standard density or density uncertainties, respectively, and

imperfect isostatic equilibrium. The structure of equation (21) clearly exhibits

the fact that a highly accurate computation of (2) and (2) cannot be achieved

by the exclusive utilization of free air anomalies Ag. For the same reason, iterative

solutions of the Integral equations for generalized surface densities by Molodensky

et al. [1952] and Brovar [1964] and the series solution by Molodensky et al. [1962]

in general do not converge in mountainous terrain. The latter permits for
auxiliary boundary surfaces under utilization of a shrinking parameter k §10 and thus

implies the possibility of analytical continuation with p=O. For the same reason,

collocation solutions would only satisfactorily apply with respect to signal variables

and ^. The analytical upward oontinuaton f the.first derivatives of the anomalous

gravity potential in mountainous terrain would requfre a supplemental approach.

4. SIGNAL ESTIMATION BY STATISTICAL COLLOCATION AND FIRST ORDER EXPANSIONS

OF PLANAR COVARIANCE FUNCTIONS. As indicated by Baussus von Luetzow [1980],

deflection differences in flat terrain may be advantageously determined by a

combination of statistical collocation and Vening Meinesz formulae provided

gravity anomalies are also available in sufficient density within a limited

region. Four point deflection estimation errors with mesh sizes Ax = 5 km,

8 km, and 24 km were found to be, respectively, of the order 0.1 arcsec, 0.2

arcsec, and 1.0 arcsec in the case of estimators free of errors. Astrogeodetically

determined deflections are, however, presently associated with errors of the

order of 0.25 arcsec. In accordance herewith, it is advantageous to employ a

relatively great number of estimators if this is feasible.

The signal variable to be estimated and representing either Z or ; may be

9



x , and the estimators may be written x +8 with 6 as a correlated measurement

error independent of xi. Under the assumption of an existing signal and noise

covariance structure the following linear regression equation can be formulated:

Xe i + 6 ) - Aj(x 1 ,i ) (22)

It is then in matrix form, with bars indicating covariances,

Xek r Ai(XiXk + A = AiNik k.2, ... , n (23)

The solution for the regression coefficient matrix follows as

Ai = ie iK NjK1  (24)

In the case of given astrogeodetic vertical deflections, 61 may be composed

of astrogeodetic errors with a variance (0.25 arcsec)2 and a correlated error

partially caused by imperfect isostatic equilibrium.

With respect to the basis for the statistical collocation approach in

physical geodesy, reference is made to Bjerhammar [1973], Grafarend [1973],

Krarup [1969], Lauritzen [1971], Moritz [1970], and Tscherning [1973]. Of

significance is that the spatial covariance function for the disturbing gravity

potential has to satisfy Laplace's equation. Baussus von Luetzow [1973]

emphasized the necessity to treat -4 as a correlated random variable where C is

a deterministic development of c in spherical harmonics of at least degree and

order 15. In accordance herewith, the requirement of homogeneity prescribes and

at least permits in practice a restriction to the planar approach in physical

geodesy. Accordingly, !T --ag, , and a- are supposed to satisfy Laplace's

equation. It is realized that the convenient requirements of homogeneity

and quasi-flat terrain are only approximately satisfied.

10



Moritz [1976] and Nash and Jordan [1978] established specific T-covariance

functions which can be expanded into space in a closed form. As has been

shown by the latter authors, the spatial covariance function is

T(r, z, z2) = f pF(p)e( c1 2) JO(rp)dp (25)

0

F(p) - f rOTT(r)Jo(rp)dr (26)

0

In equations (25) and (26), j0 is the zero-order Bessel function, r is the

variable planar distance, z, and z2 are the elevations of two points, and

T (r) is the planar T - covariance function.

The spatial vertical deflection covariances may be derived from

equation (25) in the form

(rz 1
' z2 ) = 2 2 (27)

Onn (r, zl ,z2) By2

where Y1 =Y(z 1 ),Y 2 =f ( z2 ) -

For *T- functions which permit the derivation of realistic vertical deflection

covariance functions, the Hankel transforms (26) and (25) cannot be evaluated

in closed form. As an example, Jordan's (1972] third-order Markov model

r

4T(r) = var T (1 + 1 + 3V-)e (28)

leads to the hypergeometric function when introduced in equation (26). Thereafter,

€*T(r, zi, L2) only can be obtained by an extremely lengthy numerical integration.

For this reason, it appears to be advantageous to develop first order approximations

for spatial vertical deflection covariance functions under consideration of Jordan's

.[19721 planar results. In this respect it has to be emphasized that Jordan

11



Interchanged the conventional partial differentiations , y
z

ZI Z2

Figure 2

Under consideration of Figure 2, it is to the first order

a-" z 2  (29)
C1 ~ ~ = tO+E e + Ke Z2

It is then, to the first order,

+t ELEO- 3ak(z + z )(30)E-E2 = Eo~e +0 -z 2 +:eE = e o 1 2

It is further at level z = 0

aE a(_ )g (31)

az ay az a G BY

so that

I 1 Age 1 a (32)
&0 az-&Eo ay -a Ty = oAg

Under consideration of

-- -h h(r) X (33)-ge "r- r e~

it is

h [hr)) y- ~+ hr)(- ) uah co2 + sin2CL (34)

12



The final results are hereafter

h ah
(- sn2 COS2) + 2 (35)

ZIE2 (r, 1, z1, z2) = +- )(z+ z )

- 3orog h ah

~nln (r, , z1, z2) =~7~. F~n-(F cOs2 a+- sin2 a)(zi + Z2) (36)

where #Cc and *nn represent the planar covariance functions T.-e and n,)

respectively, and where og 0g(var~lg) i.

In analogy with equation (30), it is

9g1 Ag2 = Tg9 0ge + g (z1 + z2) (37)

Under utilization of the planar approximation

-z ay ax ) (38)

it is

-GAg'(ate +ax) = -G(2- E- 0e+L -Aone) (39)

With the aid of equation (33), equation (39) can be formulated as

8 ne) -  3oa h ah

-G,(-e+ ! ) -G E (- + -) (40)

Accordingly,

3G O h ah

Ag1 Ag2 (r, Z1, Z2 )= gg . + -) (Z + z2) (41)

where 6g- - Ago-ge.

It is evident from equations (35), (36), and (41) that these represent convenient

closed approximations of the three spatial covariance functions of particular

interest. In general, the planar covariance functions should apply to the lowest

z-level in a parttcular area of application.
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5. CONCLUSION. The immediate accurate interpolation of gravity anomalies

and deflections of the vertical in mountainous terrain is only possible from

data provided in a grid of high resolution. Optimal interpolation from data

given at points separated by distances of the order 5-10 km or from multiple

data incorporating measurement noise with shorter spacing can be accomplished

by an appropriate representation of gravity anomalies and deflections as a

signal-noise process with nonstationary noise computable from the earth's

topography. In the case of deflections, a special solution of the geodetic

boundary value problem is required. As a first approximation, Faye anomalies

may be used as signal variables. Isostatic anomalies modified by the indirect

effect provide a greater degree of homogeneity and isotropy. Implementation

of the theory requiresthe utilization of existing "isostatic" computer programs

and the establishment of a supplemental program under consideration of

furnished analytical solutions. Signal estimation has to be facilitated by

the use of spatial covariance functions first order approximations of which

may be computed relatively easy from planar covariance expressions. The

optimal interpolation method in conjunction with the special solution for

deflections indicates that iterative or series solutions of the boundary

value problem of physical geodesy cannot be expected to converge in mountainous

terrain. The method developed is of practical significance for the

densification of gravity anomaly and astrogeodetic deflection networks in

mountainous terrain and is also valuable or indispensable, respectively, for

the optimal estimation of gravity anomalies and deflections from astrogeodetic

and inertial data in mountainous areas.
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